Alkaloid A cyclic organic compound that contains nitrogen in a negative oxidation state and is of limited distribution among living organisms. Over 10,000 alkaloids of many different structural types are known; and no other class of natural products possesses such an enormous variety of structures. Therefore, alkaloids are difficult to differentiate from other types of organic nitrogen-containing compounds.

Simple low-molecular-weight derivatives of ammonia, as well as polyamines and acyclic amides, are not considered alkaloids because they lack a cyclic structure in some part of the molecule. Amines, amine oxides, amides, and quaternary ammo­nium salts are included in the alkaloid group because their nitrogen is in a negative oxidation state (the oxidation state designates the positive or negative character of atoms in a molecule). Nitro and nitroso compounds are excluded as alkaloids. The almost-ubiquitous nitrogenous compounds, such as amino acids, amino sugars, pep­tides, proteins, nucleic acids, nucleotides, prophyrins, and vitamins, are not alkaloids. However, compounds that are exceptions to the classical-type definition (that is, a compound containing nitrogen, usually a cyclic amine, and occurring as a secondary metabolite), such as neutral alkaloids (colchicine, piperine), the ,B-phenyl-ethylanines, and the purine bases (caffeine, theophylline, theobromine), are accepted as alkaloids.

Alkaloids often occur as salts of plant acids such as malic, meconic, and quinic acids. Some plant alkaloids are combined with sugars, for example, solanine in potato (Solanum tuberosum) and tomatine in tomato (Lycopersicum esculentum). Others occur as amides, for example, piperine from black pepper (Piper nigrum), or as esters, for example, cocaine from coca leaves (Erythroxylum coca). Still other alkaloids occur as quaternary salts or tertiary amine oxides.

While most alkaloids have been isolated from plants, a large number have been iso­lated from animal sources. They occur in mammals, anurans (frogs, toads), salaman­ders, arthropods (ants, millipedes, ladybugs, beetles, butterflies), marine organisms, mosses, fungi, and certain bacteria.

Many alkaloids exhibit marked pharmacological activity, and some find important uses in medicine. Atropine, the optically inactive form of hyoscyamine, is used widely in medicine as an antidote to cholinesterase inhibitors such as physostigmine and insecticides of the organophosphate type; it is also used in drying cough secretions. Morphine and codeine are narcotic analgesics, and codeine is also an antitussive agent, less toxic and less habit-forming than morphine. Colchicine, from the corms and seeds of the autumn crocus, is used as a gout suppressant. Caffeine, which occurs in coffee, tea, cocoa, and cola, is a central nervous system stimulant; it is used as a cardiac and respiratory stimulant and as an antidote to barbiturate and morphine poisoning. Eme­tine, the key alkaloid of ipecac root (Cephaelis ipecacuanha), is used in the treatment of amebic dysentery and other protozoa! infections. Epinephrine or adrenaline (see structure), produced in most animal species by the adrenal medulla, is used as a bronchodilator and cardiac stimulant and to counter allergic reactions, anesthesia, and cardiac arrest.

Share this post:

مقالات قد تفيدك :

عن Akram Amir El Ali

استاذ الكيمياء التحليلية ومصمم غرافيك

شاهد أيضاً

ملخص الفصل الرابع من كتاب الكيمياء – ريموند تشانج (شانج) و جاسون أوفربي Chapter 4 Notes CHEMISTRY Chang & Overby

ملخص الفصل الرابع من كتاب الكيمياء – ريموند تشانج (شانج) و جاسون أوفربي Chapter 4 …

اترك تعليقاً

لن يتم نشر عنوان بريدك الإلكتروني. الحقول الإلزامية مشار إليها بـ *

هذا الموقع يستخدم Akismet للحدّ من التعليقات المزعجة والغير مرغوبة. تعرّف على كيفية معالجة بيانات تعليقك.